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Discussions of counterparty credit have long recognised that it is a 
dual contingency risk. An institution experiences exposure to po-
tential credit loss when a counterparty loses money on its bilateral 
trades with the institution. This creates positive mark-to-market 
values on the institution’s balance sheet reflecting the present value 
of money owed by the counterparty. Actual realised losses (credit 
risk rather than just credit exposure) require that the counterparty 
default after having experienced losses on its bilateral portfolio of 
trades with the institution.
 If the likelihood of default is statistically independent of the mar-
ket events giving rise to exposure, it is valid to calculate expected 
credit losses by simulating expected exposure separately and then 
multiplying by the likelihood of default. Unfortunately, this is not a 
valid approach if default and exposure are correlated (either posi-
tively or negatively) with each other. This chapter describes a means 
of simulating exposure conditional on default of a counterparty. The 
expected value of such conditional exposure can then be multiplied 
by the probability of default to derive a statistically valid estimate of 
expected loss even when exposure and default are correlated. This 
makes derivation of expected loss no more computationally bur-
densome than a standard unconditional exposure simulation.

INTRODUCTION
Simulation of credit exposure to derivative counterparties dates 
back to the mid-1980s. It was initially prompted by the need to in-
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clude a provision in the Basel I Capital Accord for potential credit 
losses on banks’ rapidly growing derivative market-making activi-
ties. Early analysis focused on individual interest rate swaps and 
foreign exchange transactions, and was designed to provide an em-
pirical basis for the parameters in what came to be known as the 
mark-to-market plus add-on approach. This type of calculation was 
originally designed as a simple way for banks to derive their total 
potential credit exposure to all derivative counterparties. An unfor-
tunate effect of implementing this approach in the Basel I rules was 
that nearly all banks proceeded to implement a similar (although 
often more conservative) calculation for measuring and controlling 
potential credit exposure to individual counterparties. Arguably, 
this delayed serious efforts to develop more realistic exposure mea-
surement techniques for many years.
 In the early days, application of netting was not legally certain, 
even in major G7 economies. Thus, the simple addition of assess-
ments for single transactions did not introduce a serious distortion. 
As netting became more widely recognised in legislation and case 
law precedents, some means of reflecting this risk-reducing phe-
nomenon in credit assessments became more urgent. Even then, 
however, this often took the form of some easing of the parameters 
in the mark-to-market plus add-on approach, rather than develop-
ing a full-blown simulation process.
 A few banks began work on exposure simulation systems in the 
early 1990s.1 Such efforts were necessarily hampered by limitations 
on the computing capacity that was commercially practical to de-
vote to such systems. The focus was primarily on making significant 
improvements to the mark-to-market plus add-on approach, which 
was quite a modest goal given the well-known shortcoming of that 
technique. In general, the philosophy was to err on the side of con-
servatism so that simulations would not understate exposure versus 
approved limits. Achieving significantly greater sophistication was 
deemed commercially impractical and of marginal importance.
 Much has changed in the past 20 years, both in the derivative 
market itself and in the technology available to support related 
risk systems. The biggest change in the derivative market has been 
the explosion of transactions for which some form of credit risk is 
the primary variable driving the value. Single-name credit default 
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swaps and a vast array of structured credit securities, both primary 
and synthetic, have introduced a new dimension of complexity to 
valuation and to counterparty exposure simulation. More recently, 
the crisis in financial markets that erupted in 2008 sharpened the 
recognition of counterparty risk as a very real threat that must be 
taken seriously. This has generated increased demand for more so-
phisticated exposure measures and a desire to price for counter-
party credit risk in the normal course of daily trading activity.
 Fortunately, some advances in technology since the turn of the 
century are well suited to supporting these aspirations for coun-
terparty credit risk analysis that is both timelier and more sophisti-
cated. The two advances with the most to offer are:

o

o

grid computing that enables massive parallel processing; and
64-bit architecture that supports a massive expansion in address-
able memory capacity.

 While these are not extremely recent innovations, they have only 
become proven, commercially attractive, mainstream technologies 
in recent years. Furthermore, as with all major advances in hard-
ware architecture, pre-existing software has had to undergo signifi-
cant revisions to take full advantage of the new possibilities. The 
combination of these hardware advances and progressive software 
adaptation has created dramatic new opportunities for improved 
management of counterparty credit risk. For the first time it is com-
mercially feasible to deploy incremental Monte Carlo simulation as 
a means of assessing the exposure impact of a proposed new deal 
sufficiently rapidly to provide trading decision support. This is es-
sential if traders are going to be charged for the incremental expect-
ed credit default losses implied by their trades – credit valuation 
adjustment (CVA) – and for the capital to provide a cushion against 
potential unexpected credit losses. This chapter focuses on an ef-
ficient derivation of the exposure at default (EAD) appropriate for 
input into the economic capital calculation which is sensitive to non-
zero correlation between exposure and the probability of default.

WRONG-WAY AND RIGHT-WAY RISK
Wrong-way credit risk burst into market consciousness in the midst 
of the Asian currency crisis of 1997–98. Many Asian corporations 
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had borrowed in G7 currencies, most often US dollars or yen. If 
their revenues were primarily in domestic currency, this presented a 
major foreign exchange risk. Depreciation of these borrowers’ local 
currency would significantly increase their effective debt burden. To 
alleviate this contingency, many such corporations hedged their for-
eign exchange risk in the currency swap market. Furthermore, they 
often executed these transactions with Western banks. Having exe-
cuted these trades with an Asian corporation, the Western bank now 
held a sizable open foreign exchange position that they needed to 
hedge. In looking for suitable professional counterparties, the most 
active players often would be money centre banks in the original 
borrower’s home country. In executing such a hedge, however, the 
Western banks took on classic wrong-way risk. The Western bank 
was paying the Asian currency and receiving its own currency from 
an Asian bank. When several Asian currencies depreciated dra-
matically, the value of these trades moved decisively in favour of 
the Western banks just as the local economies of their counterparty 
banks were falling into crisis. The local turmoil resulted in several 
Asian bank failures and consequent credit losses for the Western 
bank counterparties to these significantly in-the-money trades.
 As always, experience was a harsh but effective teacher. Since the 
derivative credit losses stemming from the largely inadvertent build-
up of wrong-way risk prior to the Asian currency crisis, the correla-
tion between exposure and default probability has remained a lively 
topic for debate. Since most end-users are primarily attempting to 
hedge fundamental business risks most of the time, there should be 
a strong presumption that most derivative positions represent right-
way risk. An example is an airline entering into a swap where they 
pay fixed and receive a floating payment based on the future price 
of jet fuel. They lose money on the swap when jet fuel prices fall, 
but this price decline tends to increase the profitability of their core 
business, making them a better credit risk. Even though most swaps 
and other derivatives are used to hedge fundamental business risks, 
the Asian crisis and its associated losses drove home the realisation 
that this cannot be taken for granted in any given bilateral portfolio.

IMPLICATIONS FOR CALCULATION OF ECONOMIC CAPITAL
In general, we think of expected credit losses as the product of the 
probability of default times expected exposure (adjusted for expect-
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ed recoveries). This is quite correct if exposure is static and prede-
termined. It also is correct if we can assume that random exposure 
is uncorrelated with the probability of counterparty default. As not-
ed in the previous section, however, such statistical independence 
between exposure and default will tend to be rare. In most cases it 
is to be expected that exposure is negatively (ie, favourably) cor-
related with the likelihood of default. If a counterparty is hedging 
a fundamental business risk, the bank will tend to make money 
on their bilateral trades when the fundamental economic factors 
are favourable to the counterparty’s business, thereby reducing the 
probability of default. In other, probably less likely but potentially 
important, situations the toxic combination of rising exposure and 
rising default probability needs to be recognised.
 In calculating unexpected losses used for deriving economic 
capital, it is similarly important not to assume the independence 
of exposure and probability of default, as these unlikely but toxic 
cases of wrong-way risk may have an even greater impact on the 
tail losses driving trading book economic capital than on the level 
of expected loss. In the discussion that follows, we first consider 
credit defaults as the only driver of economic capital. At the end we 
briefly describe how the method we propose could be extended to 
reflect the impact of credit rating transitions short of default.
 The usual process for dealing with the correlation of exposure 
and default is to include a credit quality variable in the simulation, 
and to correlate this with all the market variables that drive the 
value of trades in the bilateral portfolio. The credit quality variable 
is then evaluated against a default threshold. For every time point 
in every simulation, it is then possible to derive the value of the 
exposure and a binary default/no default indicator for the status 
of the counterparty. By generating a sufficient number of paths, it 
is possible to determine what proportion of the time a default oc-
curs and the distribution of exposure across those instances when it 
does. The obvious problem with this “brute force” approach is that 
it is massively wasteful of computing resources. In the overwhelm-
ing majority of instances, for all but the shakiest of counterparties, 
there will be no default. In these cases the exposure amount is ir-
relevant to the credit calculation since no credit loss has occurred.
 Of course, it is possible to simulate the full set of market drivers, 



6

COUNTERPARTY CREDIT RISK

including the credit quality variable, and only calculate the implied 
exposure if a default has occurred. Even so, given the rarity of a 
default it would often be necessary to generate a million or more 
full market scenarios to obtain as few as a thousand instances of de-
fault. Our proposal is to take this thought process a step further and 
simulate the drivers of the portfolio value conditional on the credit 
quality variable being in default status at a specified time horizon. 
This approach encounters problems if the desire is to generate a full 
life of the portfolio analysis since, in such an approach, the require-
ment is to capture those situations where default occurs at a given 
time while not having occurred prior to that time. Nevertheless, 
for a single period analysis (say at a one-year horizon, commonly 
used for calculating economic capital) simulating exposure condi-
tional on default can lead to a significant reduction in the necessary 
amount of computation.

THE SIMULATION FRAMEWORK
The analytics behind this approach are as follows. Let the scalar 
V(t) be the future value of a portfolio of securities as a function of 
time. For portfolios of practical interest, V(t) is unknown and a fun-
damental risk management problem is to estimate its distribution. 
A common solution to this problem is a Monte Carlo simulation in 
which V(t) is calculated as a function v of a vector of realisations 
of a set of stochastic market price processes p(t). These processes 
are generally modelled mathematically as continuous functions but 
in the simulation can be realised only at a set of n discrete times 
t1, t2, … tn. For simplicity, we assume that this set of times is the 
same for each process. Each Monte Carlo scenario s consists of an 
equally probable vector of discrete process realisations ps(t) and a 
corresponding evaluation of Vs(t) = v[ps(t)]. To lighten the notation, 
the remaining discussion is in the context of a single Monte Carlo 
scenario. Also, we do not assume any particular form of informa-
tion filtration, though most implementations operate in the “natu-
ral” filtration.
 In the framework we are considering, an individual price process 
P(t) may be of a form which could comprise diffusive, jump and 
complicated drift components, but all randomness is derived from 
a vector z of correlated standard normal variables generated at 
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each simulation realisation time. In other words, the value of each 
process realisation at the kth simulation time P(tk) can be written as 
a function of zk and the realisation of p(t) at previous simulation 
times. (The size m of z may be either smaller or larger than the size 
of p. On the one hand, some processes may have more than one 
stochastic driver; on the other, some stochastic drivers may be sys-
temic and be shared among several processes.) We assume that the 
correlation matrix Σ of z is the same at each simulation time.
 In this framework, the form of the individual price processes is 
quite general, but their possible joint distribution is constrained by 
the underlying multivariate Gaussian distribution. Despite this limi-
tation, the framework is justly popular because of its relative tracta-
bility with respect to calibration and implementation. It also is ame-
nable to various extensions, one of which we describe in this chapter.

CONDITIONAL SIMULATION
Suppose that at a given simulation time, the m normal variables of z 
are partitioned into subsets z1 and z2 of sizes q and m - q respectively:

where z2 is fixed in advance. The distribution of z1 conditioned on z2 
is the conditional multivariate normal distribution. In general terms 
(if the variables of z do not have identical, standard normal distri-
butions), when z is characterised by the mx1 mean vector μ and the 
mxm covariance matrix Σ then, conditional on fixed values Z2 of the 
stochastic vector z2, z1 is a multivariate normal distribution charac-
terised by the qx1 mean vector μq and the qxq covariance matrix Σq.
 If we partition the parameters of the unconstrained stochastic 
process such that

with dimensions                                                

[qx1],           [qxq],    [qx(m-q)]
[(m-q)x1],     [(m-q)xq], [(m-q)x(m-q)]

then the parameters of the constrained stochastic process for z1 
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conditional on the realisation Z2 of the stochastic vector z2 can be 
derived as

 
 (Note that, in general, neither Σ nor Σ22 is positive definite; conse-
quently, the inverse of Σ22 must be represented by some approxima-
tion such as the Moore-Penrose pseudo-inverse.) The significance 
of the conditional multivariate normal distribution is that it is not 
necessary to generate complete scenario realisations of all market 
processes if we want to restrict our attention to scenarios for which 
some subset of the processes p(t) (let’s refer to this subset as r(t)) 
exhibits a particular property. It is sufficient to generate candidates 
of r(t) alone because we can “fill-in” the complete scenario by con-
ditioning the remaining normal draws driving the simulation from 
the subset of z2 that generates acceptable values for r(t).

CONDITIONING APPLIED TO DEFAULT
In the setting we have described, the processes r(t) represent the 
credit status process of the counterparty, and we are interested in 
realisations of r(t) that imply counterparty default. We have stated 
earlier that in this chapter we restrict our attention to short simula-
tion horizons for which a single period default model is suitable. 
From this perspective, the credit status process can have only two 
outcomes, namely default and survival. Suppose, then, that we 
choose a credit status process in which only the terminal value is 
relevant in deciding default. We will not have a default time to 
guide us in choosing a particular exposure value in the simulation 
scenario to use as the exposure at default. For regulatory capital 
this would be consistent with the use of so-called effective expo-
sure, in which exposure is floored at its previous maximum value, 
as the measure of exposure at default. For economic capital pur-
poses, another measure of exposure, such as a simple or a weighted 
average over the one-year time horizon, may be considered.
 Why are we interested in a complete realisation of the credit sta-
tus process if its terminal value is the only thing that determines 
default? The reason is that exposure may be path dependent if it 
arises from some path-dependent valuation feature such as a bar-
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rier event or an exercise decision, as occurs in a physically settled 
swaption. We would therefore like to condition complete paths of 
market realisations on counterparty default.
 The attraction of a “terminal” model of default is that it can be 
used to generate market scenarios that incorporate counterparty 
default very efficiently. Let the credit status process be a standard 
Wiener process W(t) with W(0) = 0. The conditioning vector z2 is 
therefore of length one, consisting of just one normal draw at each 
simulation time. The probability of default is an exogenous input 
to the model; the appropriate probability to use is the probability 
PD(T) that the time of default τD is less than or equal to the simula-
tion horizon T. The interpretation of the default process is that de-
fault occurs if the terminal value W(T) is below the threshold value 
implied by the given default probability. Since the Wiener process 
has a normal marginal distribution, this means that default is as-
sociated with the following terminal values of W

 For our purposes, the Wiener process has two important proper-
ties. The first is that a Wiener process that is pinned at its endpoints 
can be randomly “filled in” using the Brownian bridge. The second 
is that the sequence of normal draws that would produce a discrete 
realisation of a Wiener process can be deduced from the realisation 
itself. We use these properties as follows. We pin W(T) randomly in 
the default region by applying a standard uniform variable u to the 
formula for the terminal distribution

 Having pinned W(0) and W(T), we construct a complete discrete 
realisation of W(t) from a sequence of independent standard nor-
mal variables X1, X2, … , Xn by applying the Brownian bridge

 Note that the sequence of random variables x is not the same as 
the sequence z2 we require to condition the complete market sce-
nario. That is because the increments of a Brownian bridge process 
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are different from the increments of a Wiener process when consid-
ered as a function of the random normal drivers. To condition the 
scenario, we must interpret a given sequence of Brownian bridge 
increments as Wiener process increments. The required sequence 
of z2 is the one that would have produced the bridged realisation 
of W(t) had it been generated by an unconditioned simulation. But 
this can be deduced from the increments of W

 In summary, we can efficiently generate a default scenario by ap-
plying the inverse normal distribution function to a standard uni-
form variable to generate a random W(T), applying the Brownian 
bridge to this value to construct a complete default process realisa-
tion W(t), and calculating the sequence of conditioning normal vari-
ables z2 that is implied by this realisation. The simulated realisation 
of p(t) that is conditioned on z2 using the conditional multivariate 
normal distribution will be consistent with counterparty default to 
the extent allowed by the correlation framework of the simulation.

ECONOMIC CAPITAL CALCULATIONS
Outside the trading book context, unexpected credit losses used in 
deriving economic capital are driven by variations in default rates. 
Exposure is treated as a pre-determined input to this stochastic 
process. One common procedure for treating market-driven coun-
terparty exposure is to take expected exposure from unconditional 
simulations as the static input to the economic capital model. As 
described above, however, this fails to account for the consistent 
presence of correlation (positive of negative) between the level of 
exposure and the probability of default. In this sense, expected ex-
posure conditional on default is a much more defensible static in-
put to the simulation of default losses across the full credit portfolio 
than is unconditional expected exposure.
 Of course, this still leaves an open question. We have derived 
simulations for multiple paths of exposure for discrete points over 
the one-year time horizon conditional on the modelled value of the 
credit status variable pinned in the default range at one year. From 
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this we can extract an expected exposure at each simulation point. 
We still need to decide how to transform this vector of conditional 
expected exposures into a fixed input to the economic capital mod-
el. Remember that we have constrained the credit status indicator 
in a way that guarantees default status sometime in the following 
year, rather than at a specific point in time. This argues for taking 
some type of average over the year as our input rather than the ter-
minal value at one year, even though one-year forward is the only 
point where default status of the credit variable is guaranteed. Us-
ing the terminal value also would have the unfortunate property of 
showing zero expected exposure at default when all trades run off 
during the year, even though default could occur before year end.
 The spirit of Basel II would argue for using the average over time 
of effective expected exposure, where each period’s value is floored 
at the previous maximum. This approach is based on the assump-
tion of continuing replacement business as existing transactions 
mature. For economic capital, this violates the spirit of most coun-
terparty exposure calculations, which are premised on analysing 
a static portfolio with existing trades ageing and running off over 
time. A seemingly attractive option would be to evaluate the values 
of the credit status variable based on the Brownian bridge against 
the default threshold at each point over the year. It then would be 
possible to take the exposure at the point the credit indicator first 
crossed the default threshold for each simulation and use the aver-
age of these exposures as input to the economic capital model. One 
argument against this is that tractable diffusion processes like the 
one used here are notoriously poor at reaching the default barrier at 
early times as frequently as we observe in the real world. With the 
process we propose, the simulated default times would be strongly 
biased toward the simulation horizon. While there is no obvious-
ly “right” answer for how to derive a single conditional expected 
exposure value from our results, a simple average of the expected 
exposures across all simulation points out to one year seems like a 
reasonable approach.

EXTENSION TO INCLUDE CREDIT TRANSITIONS
Clearly not all credit losses are driven by default, and transition 
losses feature significantly in recent thinking by the regulators. To 
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include such losses in economic capital calculations, the technique 
in this chapter can be extended in a straightforward manner to in-
clude transitions. Given the probability of transition to a given state 
over a one-year horizon, we can determine the range within which 
the credit status variable at one year must lie to be consistent with 
this transition. Pinning the terminal value of the credit status vari-
able in that range and following the logic outlined will give expo-
sure paths conditional on this transition. One drawback is that this 
process requires repeating the exposure simulation for each termi-
nal transition state we wish to consider. This still must be massively 
more efficient, however, than a brute force approach.

1 Notable among these banks were Citibank, Bankers Trust, Morgan Guarantee Trust and 
Bank of America.


